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ABSTRACT: The application of near infrared (NIR) spec-
troscopy for the prediction of the thermal decomposition
behavior of lignocellulosic biomass (three types of woody
biomass and three types of herbaceous biomass) was suc-
cessfully performed along with statistical analysis. The
thermal degradation behaviors of the woody and herba-
ceous biomass were different because of their different
chemical compositions. Herbaceous biomass was degraded
at lower temperature than woody biomass. The weight-
loss profiles as a function of temperature were obtained by
thermogravimetric analysis (TGA) at a heating rate of
25�C/min under nitrogen gas. The weight-loss percentage
at 10 temperatures in the range 150–600�C was predicted

by a wavelet partial least squares (PLS) model, which
showed significantly better predictive performance than
the ordinary PLS model. The results show that the data
predicted by the wavelet PLS model was well fitted to the
original data by TGA, in which the root-mean-square error
in prediction values less than 5.5 suggested that NIR spec-
troscopy was applicable for rapid analysis to characterize
the thermal decomposition behavior of lignocellulosic bio-
mass for energy production. VVC 2009 Wiley Periodicals, Inc.
J Appl Polym Sci 114:3229–3234, 2009
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INTRODUCTION

Lignocellulosic biomass has become a promising
raw feedstock for bioenergy and other biobased
products because of its abundance, renewability,
and other environmental benefits. Various methods
have been used to convert lignocellulosic biomass
into bioenergy. These include microbial and enzy-
matic processes to produce ethanol1–5 and thermo-
chemical processes (e.g., pyrolysis, gasification,
direct liquefaction) to produce synthesis gas (so-
called Syngas) consisting primarily of carbon mon-
oxide, carbon dioxide, and hydrogen or pyrolysis
oils (bio-oil).6,7

In thermochemical processes, especially pyrolysis
and gasification, the thermal decomposition behavior
is crucial to the understanding of the reaction mech-
anism and the characteristics of the end products.

As is well known, biomass thermal decomposition
proceeds through a series of complex reactions that
are dependent on chemical composition, molecular
structure, extractives, and ash content.8–11 For exam-
ple, in thermogravimetric analysis (TGA) experi-
ments with low heating rates (<100�C/min),
biomass materials decompose in well-described
stages of moisture evolution, hemicellulose decom-
position, and cellulose decomposition, whereas lig-
nin is decomposed very slowly at a minor level.6,12

The decomposition mechanism of each component is
also different. For example, cellulose chain length
can be reduced by bond scission with the generation
of free radicals involved in dehydration, the forma-
tion of carboxyl and carbonyl groups, CO2 and CO
emission, and carbon formation. Depolymerization
of cellulose can also occur by scission of the glucosi-
dic units and the formation of levoglucosan.6 The
thermal degradation behavior of lignin is greatly
influenced by complicated structures composed
mainly of phenyl propane units.5,13,14 The thermal
decomposition of hemicellulose also differs because
of its various molecular structures. It has also been
reported that high ash concentrations reduce hydro-
carbon yields during thermochemical conversion.15
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The objective of this study was to predict thermal
decomposition behavior with near infrared (NIR)
spectroscopy and its multivariate analysis, which are
known together as a rapid analysis tool for the char-
acterization of biomass raw feedstock. To the best of
our knowledge, there is as yet no direct approach
that uses NIR spectroscopy to predict thermal
decomposition behavior, although many studies
have been done to characterize biomass quality in
terms of chemical composition, extractives, ash and
char content, and physical and anatomical proper-
ties.6,8,16,17 According to these studies, NIR, coupled
with multivariate statistical techniques, has the capa-
bility to predict biomass properties. This study was
conducted, on the basis of NIR spectroscopy and its
multivariate analysis, to predict the weight-loss pro-
file of biomass as a function of temperature in the
expectation that this information would be meaning-
ful to research on pyrolysis and gasification proc-
esses for bioenergy.

EXPERIMENTAL

Materials

Three woody biomass samples—red oak (Quercus
rubra), yellow poplar (Liriodendron tulipifera L.), and
hickory (Carya alba)—and three herbaceous biomass
samples—switchgrass (Panicum virgatum L.), corn sto-
ver (Zea mays L.), and bagasse (Saccharum spp.)—were
used for this study. Three different samples (18 sam-
ples total) were collected from each biomass. Wood
samples were collected from different trees. The sam-
ples were ground to a 2-mm size by a Wiley cutter
mill (Thomas Scientific, Swedesboro, NJ).

TGA measurements

A thermogravimetric analyzer (Pyris 1 TGA, Perkin
Elmer, Shelton, CT) was used to investigate the
weight-loss profiles of the biomass over the tempera-
ture range. Samples of 6–7 mg were first heated
from 50 to 105�C at a rate of 25�C/min and kept at
105�C for 10 min to remove the moisture. Then sam-
ples were heated again to 750�C at the same heating
rate within a nitrogen atmosphere (flow rate ¼ 20
mL/min) to collect the thermograms.

NIR measurements

The NIR measurements were conducted with an
Advanced Spectral Devices field spectrometer (ASD,
Boulder, Co) at wavelengths between 500 and 2500
nm. A fiber-optic probe oriented at 60� to the sample
surface was used to collect the reflectance spectra. A
piece of commercial, microporous Teflon was used as
the white reference material. The samples were illu-
minated with a high-intensity light at a right angle to

the sample surface. Three scans were collected from
different location of samples. Three spectra collected
on each sample (18 samples) were averaged to pro-
vide a single spectrum, which was used to predict
the weight-loss profile from TGA measurement. We
further reduced the data set by averaging the spectra
that were collected at 1-nm intervals to a spectral
data set at 10-nm intervals. Averaging the spectral
data reduced the size of the spectra matrix and sig-
nificantly reduced the time required to compute the
partial least squares (PLS) prediction models without
decreasing the quality of the models. The average
spectra were used to perform a statistical analysis of
the samples, which was implemented in MATLAB
software (The MathWorks, Inc., Natick, MA).

PLS analysis

PLS is a multivariate projection method for model-
ing a relationship between independent variables (X
values) and dependent variables (Y values). PLS
seeks to find a set of latent variables that maximizes
the covariance between X (X ¼ Mn) and Y (Y
¼ MN), where M represents the number of samples,
n is the number of independent variables, and N
stands for the number of dependent variables. It
decomposes X and Y into the forms:

X ¼ TPT þ E (1)

Y ¼ UQT þ F (2)

where T and U (¼ MA) are the matrices of the
extracted A score vectors, P (¼ nA) and Q (¼ MA)
are the loading matrices, and E (¼ Mn) and F
(¼ MN) are the residual matrices. The PLS method
searches for weight vectors (W and C) that maximize
the sample covariance between t and u, where t and
u are X-scores and Y-scores of a component, respec-
tively (Wold, 1975). By regressing X(Y) on t(u), the
loading vector p(q) can be computed as follows:

p ¼ ðtTtÞ�1XTt (3)

q ¼ ðuTuÞ�1YTu (4)

Then, the PLS regression model can be expressed as
Y ¼ XB þ G, where G is the residual vector. Here B
represents the regression coefficient, which is given
by

B ¼ WðPTWÞ�1CT ¼ XTUðTTXXTUÞ�1TTY (5)

Orthogonal signal correction (OSC)

Before a prediction model was built for the NIR data
and weight-loss profile with temperature, a
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preprocessing method of OSC was applied to the
original NIR data. OSC can selectively remove the
largest variation of the predictor variable X that is
orthogonal or unrelated to the response variable Y.18

This is possible because an OSC uses the response Y
to construct a kind of signal filter for X. The main
purpose of OSC-based preprocessing is to improve
the predictive power of the prediction model by
removing unwanted variations of the NIR data that
do not contribute to prediction. Since the introduction
of the OSC by Wold et al.,19 several OSC algorithms
have been reported.19–21 Here, a direct OSC algorithm
developed by Westerhuis et al.21 was used because of
its high reliability. The PLS model constructed on the
basis of the OSC-treated data of 54 samples was able
to explain 92.9% of the Y variation (denoted as R2Y).
This model had a higher predictive power of 82.3%
than that of 58.1% obtained from an original data-
based PLS model (R2Y ¼ 62.6%).

Wavelet

Wavelet transform provides a powerful signal analy-
sis tool by transferring a mapping from a time do-
main to a time-scale domain. An original signal is
decomposed into its contributions at different
regions of a time-scale space. One performs this
decomposition by projecting it onto corresponding
wavelet basis functions. A wavelet is a family of
functions derived from a basis function [w(t)]
defined in terms of two parameters, dilation (a;
scale) and translation (b; time):

Wa;bðtÞ ¼ 2�a=2wð2�at� bÞ (6)

The wavelet is either stretched or compressed to cre-
ate other scales, which change the width of the win-
dows. This property makes a wavelet suitable to
describe different features of the signal: wavelet
coefficients at finer levels are used to capture sharp
features, and wavelet coefficients at coarser levels
are used to capture broad or smooth features. The
wavelet coefficient can be obtained by the dot prod-
uct between a signal [f(t)] and a wavelet function:

hf ðtÞ;Wa;bðtÞi ¼
Z

f ðtÞWa;bðtÞdt (7)

Denoising is achieved by the selection of wavelet
coefficients that have valuable information. Many
wavelet threshholding procedures have been devel-
oped on the basis of the idea of selecting important
wavelet coefficients and setting unimportant ones to
zero. For example, VisuShrink,22 SURE (Stein’s
unbiased estimate of the risk function),23 and AMDL
(approximate minimum description length)24 proce-
dures have been developed. However, most of the
procedures involve only a single curve. The applica-

tion of single-curve-based procedures to multiple
curves will lead to different selections of important
wavelet coefficients in different curves. In this study,
the vertical energy threshholding procedure devel-
oped by Jung et al.25 was used to build a prediction
model based on multiple NIR data.

Root-mean-square error (RMSE)

A cross-validation method based on the predicted
residual error sum of squares was used in this study
to select the number of latent variables for the PLS
models.26 In this study, we adopted as a measure of
the predictive performance of a prediction model the
RMSE values of residuals, which were defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðyi � ŷiÞ2
n

s
(8)

where yi is the true value, ŷi is the predicted value,
and n is the total number of samples. PLS and wave-
let analysis were performed with MATLAB software
(The MathWorks, Inc., Natick, MA) and WaveLab v.
802, respectively.

RESULTS AND DISCUSSION

Figure 1 shows the weight-loss profile and deriva-
tive thermogravimetry (DTG) as a function of tem-
perature for six lignocellulosic biomass samples
(Biomass Technology Research Center, Hiroshima,
Japan). The decomposition behavior differed in all
samples. In particular, big differences occurred
between woody biomass (red oak, yellow poplar,
and hickory) and herbaceous biomass (corn stover,
switchgrass, and bagasse), which showed that the
woody biomass had a lower onset decomposition
temperature in the thermograms and a lower main
decomposition peak in the DTG curves than the her-
baceous biomass. Furthermore, in the case of herba-
ceous biomass, three clear stages of decomposition
were shown in the DTG curves. For example,
switchgrass showed a first stage with a small hump
in the temperature range from 180 to 220�C, which
was characteristic of low-molecular-weight compo-
nents, such as hemicellulose, and a second stage at
higher temperatures in the range 250–300�C, which
corresponded to the thermal degradation of cellu-
lose. A third one near 340�C was due to lignin
decomposition. On the other hand, the decomposi-
tion of woody biomass could largely be divided into
the following steps: 220–315�C was predominantly
hemicellulose decomposition, 315–380�C was cellu-
lose decomposition, and 380�C and above was lignin
decomposition. As mentioned in the Introduction, it
is a well-known phenomenon in the research field of
biomass pyrolysis and gasification that all these
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differences are because of the differences in chemical
composition, molecular weight and structure, extrac-
tives, ash content, and so on.8,27

It was well illustrated in previous reports that
NIR spectroscopy, combined with statistical analysis,
is a very useful tool for characterizing bio-
mass.6,8,16,17 Our interest stemmed from the fact that
the NIR spectra of biomass include a lot of informa-
tion, such as chemical composition and physical, me-
chanical, and structural properties, that affect the
thermal decomposition behavior.

The prediction of a weight-loss profile of biomass
over a range of temperatures was conducted by the
analysis of the NIR spectra with a multivariate cali-
bration model. The high dimensionality and collinear-
ity in the NIR spectra data make it difficult in some
cases to construct a prediction model.28 This is attrib-
uted to the fact that in this study the number of sam-
ples (i.e., 54) is much smaller than the number of
independent variables (i.e., 538). In addition, the NIR
spectra data are obtained from digitized continuous
signals so that the independent variables neighboring
in the spectra are thus highly correlated. This can be
solved by the adoption, before a model is built, of an
effective compression tool based on a wavelet trans-
form. This sequence works because NIR spectra are
quite redundant by nature and thus suitable for com-
pression. The NIR spectra data need to be compressed
by the wavelet transform, followed by the perform-

ance regression analysis on some of the wavelet coeffi-
cients. For regression analysis purposes, a multivariate
regression method of PLS can be used. PLS has pro-
ven to be useful in various regression problems.20,29,30

In particular, PLS has been shown to be a powerful
technique for multivariate calibration of noisy, col-
linear, high-dimensional, and ill-conditioned data.28

To evaluate the performance of the proposed pre-
diction model with test data, a leave-3-out procedure
was performed on the 54 NIR spectra because 3
samples in the same type of biomass showed similar
temperature profiles. That is, 3 of the 54 spectra
were kept out of the prediction model development,
and these were then predicted by the prediction
model. Then, this procedure was repeated several
times until every sample had been kept out once
and only once. Such a leave-3-out test procedure is
used to evaluate the prediction model through the
use of samples that are not included in the model-
building stage. Thus, this procedure may indicate
how reliable the prediction model would be in prac-
tice when unknown samples are predicted. A critical
parameter that determines the performance of PLS
models is the number of latent variables retained.
This number should be determined by consideration
of both the curse of dimensionality and the loss of
data information. In this study, a measure of the
predicted residual error sum of squares was used to
select the number of optimal latent variables.

TABLE I
Results of RMSEP and Adjusted R2 Values for 10 Temperature Points: Ordinary PLS Versus Wavelet PLS

Temperature

150�C 200�C 250�C 300�C 350�C 400�C 450�C 500�C 550�C 600�C

Ordinary PLS RMSEP 0.1423 0.7416 1.1756 3.5449 6.7114 4.3479 4.0251 3.7626 3.9069 4.2767
Adjusted R2 0.974 0.963 0.957 0.909 0.828 0.832 0.845 0.840 0.808 0.793

Wavelet PLS RMSEP 0.1025 0.5953 1.1941 2.7396 5.2447 1.8118 1.7103 2.0316 2.8508 3.6569
Adjusted R2 0.981 0.976 0.955 0.913 0.852 0.887 0.891 0.880 0.843 0.827

Figure 1 (A) Thermograms and (B) DTG curves of all biomass obtained by TGA measurements (heating rate ¼ 25�C/
min). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Table I shows the prediction results of the RMSE
values [i.e., the root-mean-square error in prediction
(RMSEP) values] and adjusted R2 values for the

selected 10 temperature points (i.e., 150, 200, 250,
300, 350, 400, 450, 500, 550, and 600�C). For compari-
son purposes, two PLS prediction models, which
were based on ordinary PLS and OSC-treated wave-
let PLS, were built and evaluated. In the wavelet
PLS, the vertical energy threshholding method
selected only 49 wavelet coefficients. In this study, a
Symmlet-8 wavelet was used to build the wavelet
PLS prediction model. As shown in Table I, the
wavelet PLS model produced lower RMSE values
for all response variables of the 10 temperature
points; thus, it showed a significantly better predic-
tive performance than the ordinary PLS model.
The proposed prediction model, for example, was

able to predict the weight loss percentage at 150�C
with RMSEP ¼ 0.1025, whereas the ordinary PLS
predicted it with RMSE ¼ 0.1423. In both PLS mod-
els, the response for the weight loss at 150�C showed
a minimum RMSEP value and a maximum RMSEP
value for the weight loss at 350�C. This means that
the response values of weight loss at 150�C were
predicted more successfully than those at 350�C. The
proposed prediction model, for example, was able to
predict the weight loss percentage at 150�C with
RMSEP ¼ 0.1025, whereas the ordinary PLS pre-
dicted it with RMSEP ¼ 0.1423. In both PLS models,
the response for the weight loss at 150�C showed a
maximum R2 value of 97.4%, although there were
some underestimated observations, as shown in Fig-
ure 2(A), and a minimum R2 value of 82.80% for the
weight loss at 600�C. As shown in Figure 2, the pre-
dictions of the weight loss at 350�C showed larger
variations than that at 150�C.
To visualize the predictive performance of the

proposed prediction model, the predicted weight
loss profiles were plotted against those observed
with temperature, as shown in Figure 3 [yellow pop-
lar in Fig. 3(A) and switchgrass in Fig. 3(B)]. As
expected, low RMSE values resulted in little

Figure 2 Plots of observed and predicted weight losses
(%) at (A) 150 and (B) 350�C with wavelet PLS.

Figure 3 Weight-loss profiles with temperature corresponding to (A) a sample of yellow poplar and (B) a sample of
switchgrass. Circles indicate the observed values, and the crossed lines show the predicted values.
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deviation between the predicted and observed
response variables. Such a good performance of the
wavelet PLS prediction model can be explained by a
comparison of the original and reconstructed data.
Only 49 wavelet coefficients out of 538 were used to
reconstruct the original curves, and the reconstruc-
tion results were quite successful. In this case, only
9.11% of the original information was good enough
to capture the important patterns of the NIR data
needed to build a prediction model.

CONCLUSIONS

The NIR spectra of three types of woody biomass
and three types of herbaceous biomass were success-
fully analyzed to predict their thermal decomposi-
tion behavior. The weight losses at 10 temperatures
measured by TGA measurement were well matched
with the ones obtained by the wavelet PLS model,
which showed better predictive performance than
the ordinary PLS model. This study showed the pos-
sibility of using NIR spectra to characterize the ther-
mal decomposition behavior of lignocellulosic
biomass for energy production. However, more
accurate prediction and a field-acceptable calibration
model will require more diverse samples from dif-
ferent origins and more in-depth TGA experiments
with different measurement conditions, such as iso-
thermal measurements, different environments, and
other related parameters.
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Lab Syst 1998, 44, 175.

19. Sjoblom, J.; Svensson, O.; Josefson, M.; Kullberg, H.; Wold, S.
Chemom Intell Lab Syst 1998, 44, 229.

20. Fearn, T. Chemom Intell Lab Syst 2000, 50, 47.
21. Westerhuis, J. A.; Jong, S.; Smilde, A. K. Chemom Intell Lab

Syst 2001, 56, 13.
22. Donoho, D. L.; Johnstone, I. M. Biometrika 1994, 81, 425.
23. Donoho, D. L.; Johnstone, I. M. Biometrika 1995, 81, 425.
24. Saito, N. Wavelets in Geophysics; Academic: New York, 1994;

p 299.
25. Jung, U.; Jeong, M.; Lu, J. C. IEEE Trans Syst Man Cybernet B

2006, 36, 1128.
26. Barker, M.; Rayens, W. J Chemom 2003, 17, 166.
27. Skodras, G.; Grammelis, P.; Basinas, P.; Kakaras, E.; Sakellaro-

poulos, G. Ind Eng Chem Res 2006, 45, 3791.
28. Qin, S. J. J Chemom 2003, 17, 480.
29. Kourti, T. Int J Adapt Control Signal Process 2005, 19, 213.
30. Rosipal, R.; Trejo, L. J. J Machine Learn Res 2001, 2, 97.

3234 LEE ET AL.

Journal of Applied Polymer Science DOI 10.1002/app


